22 research outputs found

    Maximum Independent Sets in Subcubic Graphs: New Results

    Get PDF
    The maximum independent set problem is known to be NP-hard in the class of subcubic graphs, i.e. graphs of vertex degree at most 3. We present a polynomial-time solution in a subclass of subcubic graphs generalizing several previously known results

    Maximum Independent Sets in Subcubic Graphs: New Results

    Get PDF
    International audienceWe consider the complexity of the classical Independent Set problem on classes of subcubic graphs characterized by a finite set of forbidden induced subgraphs. It is well-known that a necessary condition for Independent Set to be tractable in such a class (unless P=NP) is that the set of forbidden induced subgraphs includes a subdivided star S k,k,k , for some k. Here, S k,k,k is the graph obtained by taking three paths of length k and identifying one of their endpoints. It is an interesting open question whether this condition is also sufficient: is Independent Set tractable on all hereditary classes of subcu-bic graphs that exclude some S k,k,k ? A positive answer to this question would provide a complete classification of the complexity of Independent Set on all classes of subcubic graphs characterized by a finite set of forbidden induced subgraphs. The best currently known result of this type is tractability for S2,2,2-free graphs. In this paper we generalize this result by showing that the problem remains tractable on S 2,k,k-free graphs, for any fixed k. Along the way, we show that subcubic Independent Set is tractable for graphs excluding a type of graph we call an "apple with a long stem", generalizing known results for apple-free graphs

    Bounding clique-width via perfect graphs

    Get PDF
    We continue the study into the clique-width of graph classes defined by two forbidden induced graphs. We present three new classes of bounded clique-width and one of unbounded clique-width. The four new graph classes have in common that one of their two forbidden induced subgraphs is the diamond. To prove boundedness of clique-width for the first three cases we develop a technique based on bounding clique covering number in combination with reduction to subclasses of perfect graphs. We extend our proof of unboundedness for the fourth case to show that Graph Isomorphism is Graph Isomorphism-complete on the same graph class

    Parameterized Inapproximability of Independent Set in HH-Free Graphs

    Get PDF
    We study the Independent Set (IS) problem in HH-free graphs, i.e., graphs excluding some fixed graph HH as an induced subgraph. We prove several inapproximability results both for polynomial-time and parameterized algorithms. Halld\'orsson [SODA 1995] showed that for every δ>0\delta>0 IS has a polynomial-time (d12+δ)(\frac{d-1}{2}+\delta)-approximation in K1,dK_{1,d}-free graphs. We extend this result by showing that Ka,bK_{a,b}-free graphs admit a polynomial-time O(α(G)11/a)O(\alpha(G)^{1-1/a})-approximation, where α(G)\alpha(G) is the size of a maximum independent set in GG. Furthermore, we complement the result of Halld\'orsson by showing that for some γ=Θ(d/logd),\gamma=\Theta(d/\log d), there is no polynomial-time γ\gamma-approximation for these graphs, unless NP = ZPP. Bonnet et al. [IPEC 2018] showed that IS parameterized by the size kk of the independent set is W[1]-hard on graphs which do not contain (1) a cycle of constant length at least 44, (2) the star K1,4K_{1,4}, and (3) any tree with two vertices of degree at least 33 at constant distance. We strengthen this result by proving three inapproximability results under different complexity assumptions for almost the same class of graphs (we weaken condition (2) that GG does not contain K1,5K_{1,5}). First, under the ETH, there is no f(k)no(k/logk)f(k)\cdot n^{o(k/\log k)} algorithm for any computable function ff. Then, under the deterministic Gap-ETH, there is a constant δ>0\delta>0 such that no δ\delta-approximation can be computed in f(k)nO(1)f(k) \cdot n^{O(1)} time. Also, under the stronger randomized Gap-ETH there is no such approximation algorithm with runtime f(k)no(k)f(k)\cdot n^{o(k)}. Finally, we consider the parameterization by the excluded graph HH, and show that under the ETH, IS has no no(α(H))n^{o(\alpha(H))} algorithm in HH-free graphs and under Gap-ETH there is no d/ko(1)d/k^{o(1)}-approximation for K1,dK_{1,d}-free graphs with runtime f(d,k)nO(1)f(d,k) n^{O(1)}.Comment: Preliminary version of the paper in WG 2020 proceeding

    Kernelization and Parameterized Algorithms for 3-Path Vertex Cover

    Full text link
    A 3-path vertex cover in a graph is a vertex subset CC such that every path of three vertices contains at least one vertex from CC. The parameterized 3-path vertex cover problem asks whether a graph has a 3-path vertex cover of size at most kk. In this paper, we give a kernel of 5k5k vertices and an O(1.7485k)O^*(1.7485^k)-time and polynomial-space algorithm for this problem, both new results improve previous known bounds.Comment: in TAMC 2016, LNCS 9796, 201

    kk-Critical Graphs in P5P_5-Free Graphs

    Full text link
    Given two graphs H1H_1 and H2H_2, a graph GG is (H1,H2)(H_1,H_2)-free if it contains no induced subgraph isomorphic to H1H_1 or H2H_2. Let PtP_t be the path on tt vertices. A graph GG is kk-vertex-critical if GG has chromatic number kk but every proper induced subgraph of GG has chromatic number less than kk. The study of kk-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is (k1)(k-1)-colorable. In this paper, we initiate a systematic study of the finiteness of kk-vertex-critical graphs in subclasses of P5P_5-free graphs. Our main result is a complete classification of the finiteness of kk-vertex-critical graphs in the class of (P5,H)(P_5,H)-free graphs for all graphs HH on 4 vertices. To obtain the complete dichotomy, we prove the finiteness for four new graphs HH using various techniques -- such as Ramsey-type arguments and the dual of Dilworth's Theorem -- that may be of independent interest.Comment: 18 page

    Clique-width : harnessing the power of atoms.

    Get PDF
    Many NP-complete graph problems are polynomial-time solvable on graph classes of bounded clique-width. Several of these problems are polynomial-time solvable on a hereditary graph class G if they are so on the atoms (graphs with no clique cut-set) of G . Hence, we initiate a systematic study into boundedness of clique-width of atoms of hereditary graph classes. A graph G is H-free if H is not an induced subgraph of G, and it is (H1,H2) -free if it is both H1 -free and H2 -free. A class of H-free graphs has bounded clique-width if and only if its atoms have this property. This is no longer true for (H1,H2) -free graphs, as evidenced by one known example. We prove the existence of another such pair (H1,H2) and classify the boundedness of clique-width on (H1,H2) -free atoms for all but 18 cases

    A boundary property for upper domination

    No full text
    An upper dominating set in a graph is a minimal (with respect to set inclusion) dominating set of maximum cardinality. The problem of finding an upper dominating set is generally NP-hard, but can be solved in polynomial time in some restricted graph classes, such as P4 -free graphs or 2K2 -free graphs. For classes defined by finitely many forbidden induced subgraphs, the boundary separating difficult instances of the problem from polynomially solvable ones consists of the so called boundary classes. However, none of such classes has been identified so far for the upper dominating set problem. In the present paper, we discover the first boundary class for this problem
    corecore